Deregulated Expression of Mitochondrial Proteins Mfn2 and Bcnl3L in Placentae from Sheep Somatic Cell Nuclear Transfer (SCNT) Conceptuses

نویسندگان

  • Marta Czernik
  • Paola Toschi
  • Federica Zacchini
  • Domenico Iuso
  • Grażyna Ewa Ptak
چکیده

In various animal species, the main cause of pregnancy loss in conceptuses obtained by somatic cell nuclear transfer (SCNT) are placental abnormalities. Most abnormalities described in SCNT pregnancies (such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium) suggest that placental cell degeneration may be triggered by mitochondrial failure. We hypothesized that placental abnormalities of clones obtained by SCNT are related to mitochondrial dysfunction. To test this, early SCNT and control (CTR, from pregnancies obtained by in vitro fertilization) placentae were collected from pregnant ewes (at day 20 and 22 of gestation) and subjected to morphological, mRNA and protein analysis. Here, we demonstrated swollen and fragmented mitochondria and low expression of mitofusin 2 (Mfn2), the protein which plays a crucial role in mitochondrial functionality, in SCNT early placentae. Furthermore, reduced expression of the Bcnl3L/Nix protein, which plays a crucial role in selective elimination of damaged mitochondria, was observed and reflected by the accumulation of numerous damaged mitochondria in SCNT placental cells. Likely, this accumulation of damaged organelles led to uncontrolled apoptosis in SCNT placentae, as demonstrated by the high number of apoptotic bodies, fragmented cytoplasm, condensed chromatin, lack of integrity of the nuclear membrane and the perturbed mRNA expression of apoptotic genes (BCL2 and BAX). In conclusion, our data indicate that deregulated expression of Mfn2 and Bcnl3L is responsible for placental abnormalities in SCNT conceptuses. Our results suggest that some nuclear genes, that are involved in the regulation of mitochondrial function, do not work well and consequently this influence the function of mitochondria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiency of Ovine Fibroblast or Cumulus Cells For Somatic Cell Nuclear Transfer in Sheep

Purpose: Despite remarkable progresses have been achieved in the field of somatic cell nuclear transfer (SCNT), there is little information regarding the effect of donor cell type on the efficiency mammalian somatic cell cloning in vitro. This study compared in vitro developmental competency of sheep enucleated oocytes reconstructed with either fibroblast or cumulus cells. Material and methods...

متن کامل

P-100: Improved Efficiency of Somatic Cell Nuclear Transfer in Sheep by Persecution of Recipient Oocytes with Brilliant Cresyl Blue Staining

Background: The most important factor affecting the efficiency of somatic cell nuclear transfer (SCNT) is the initial quality of the oocyte. Since the abattoir-derived oocytes are heterogeneous in quality, selection of cohort fully grown/competent oocytes is necessary for proper development of SCNT embryos. Materials and Methods: Glucose-6-phosphate dehydrogenase (G6PDH) is actively expressed i...

متن کامل

I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...

متن کامل

Analysis of ENPP2 in the Uterine Endometrium of Pigs Carrying Somatic Cell Nuclear Transfer Cloned Embryos

Somatic cell nuclear transfer (SCNT) is a useful tool for animal cloning, but the efficiency of producing viable offspring by SCNT is very low. To improve this efficiency in the production of cloned pigs, it is critical to understand the interactions between uterine function and cloned embryos during implantation. Lysophosphatidic acid (LPA) is a lipid mediator that plays an important role in t...

متن کامل

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017